Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 4507, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37495594

RESUMEN

Rift Valley fever virus (RVFV) is an emerging mosquito-transmitted virus that circulates in livestock and humans in Africa and the Middle East. Outbreaks lead to high rates of miscarriages in domesticated livestock. Women are also at risk of vertical virus transmission and late-term miscarriages. MAb RVFV-268 is a highly potent recombinant neutralizing human monoclonal antibody that targets RVFV. Here we show that mAb RVFV-268 reduces viral replication in rat placenta explant cultures and prevents vertical transmission in a rat model of congenital RVF. Passive transfer of mAb RVFV-268 from mother to fetus occurs as early as 6 h after administration and persists through 24 h. Administering mAb RVFV-268 2 h prior to RVFV challenge or 24 h post-challenge protects the dams and offspring from RVFV infection. These findings support mAb RVFV-268 as a pre- and post-infection treatment to subvert RVFV infection and vertical transmission, thus protecting the mother and offspring.


Asunto(s)
Aborto Espontáneo , Fiebre del Valle del Rift , Virus de la Fiebre del Valle del Rift , Embarazo , Animales , Humanos , Ratas , Femenino , Anticuerpos Neutralizantes , Fiebre del Valle del Rift/epidemiología , Anticuerpos Antivirales , Ganado
2.
Sci Adv ; 9(28): eadh2264, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37450601

RESUMEN

Rift Valley fever virus (RVFV) is an emerging arbovirus found in Africa. While RVFV is pantropic and infects many cells and tissues, viral replication and necrosis within the liver play a critical role in mediating severe disease. The low-density lipoprotein receptor-related protein 1 (Lrp1) is a recently identified host factor for cellular entry and infection by RVFV. The biological significance of Lrp1, including its role in hepatic disease in vivo, however, remains to be determined. Because Lrp1 has a high expression level in hepatocytes, we developed a mouse model in which Lrp1 is specifically deleted in hepatocytes to test how the absence of liver Lrp1 expression affects RVF pathogenesis. Mice lacking Lrp1 expression in hepatocytes showed minimal RVFV replication in the liver, longer time to death, and altered clinical signs toward neurological disease. In contrast, RVFV infection levels in other tissues showed no difference between the two genotypes. Therefore, Lrp1 is essential for RVF hepatic disease in mice.


Asunto(s)
Fiebre del Valle del Rift , Virus de la Fiebre del Valle del Rift , Animales , Ratones , Fiebre del Valle del Rift/genética , Virus de la Fiebre del Valle del Rift/genética , África , Hepatocitos , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética
3.
J Virol ; 96(20): e0111222, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36194021

RESUMEN

People infected with the mosquito-borne Rift Valley fever virus (RVFV) can suffer from eye-related problems resulting in ongoing vision issues or even permanent blindness. Despite ocular disease being the most frequently reported severe outcome, it is vastly understudied compared to other disease outcomes caused by RVFV. Ocular manifestations of RVFV include blurred vision, uveitis, and retinitis. When an infected individual develops macular or paramacular lesions, there is a 50% chance of permanent vision loss in one or both eyes. The cause of blinding ocular pathology remains unknown in part due to the lack of a tractable animal model. Using 3 relevant exposure routes, both subcutaneous (SC) and aerosol inoculation of Sprague Dawley rats led to RVFV infection of the eye. Surprisingly, direct inoculation of the conjunctiva did not result in successful ocular infection. The posterior segment of the eye, including the optic nerve, choroid, ciliary body, and retina, were all positive for RVFV antigen in SC-infected rats, and live virus was isolated from the eyes. Proinflammatory cytokines and increased leukocyte counts were also found in the eyes of infected rats. Additionally, human ocular cell lines were permissive for Lrp1-dependent RVFV infection. This study experimentally defines viral tropism of RVFV in the posterior segment of the rat eye and characterizes virally-mediated ocular inflammation, providing a foundation for evaluation of vaccines and therapeutics to protect against adverse ocular outcomes. IMPORTANCE Rift Valley fever virus (RVFV) infection leads to eye damage in humans in up to 10% of reported cases. Permanent blindness occurs in 50% of individuals with significant retinal scarring. Despite the prevalence and severity of this outcome, very little is known about the mechanisms of pathogenesis. We addressed this gap by developing a rodent model of ocular disease. Subcutaneous infection of Sprague Dawley rats resulted in infection of the uvea, retina, and optic nerve along with the induction of inflammation within the posterior eye. Infection of human ocular cells induced inflammatory responses and required host entry factors for RVFV infection similar to rodents. This work provides evidence of how RVFV infects the eye, and this information can be applied to help mitigate the devastating outcomes of RVF ocular disease through vaccines or treatments.


Asunto(s)
Oftalmopatías , Fiebre del Valle del Rift , Virus de la Fiebre del Valle del Rift , Ratas , Humanos , Animales , Virus de la Fiebre del Valle del Rift/fisiología , Ratas Sprague-Dawley , Inflamación , Citocinas , Aerosoles , Ceguera
4.
PLoS Negl Trop Dis ; 16(10): e0010898, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36315601

RESUMEN

Rift Valley fever (RVF) is a disease of animals and humans associated with abortions in ruminants and late-gestation miscarriages in women. Here, we use a rat model of congenital RVF to identify tropisms, pathologies, and immune responses in the placenta during vertical transmission. Infection of late-gestation pregnant rats resulted in vertical transmission to the placenta and widespread infection throughout the decidua, basal zone, and labyrinth zone. Some pups from infected dams appeared normal while others had gross signs of teratogenicity including death. Histopathological lesions were detected in placenta from pups regardless of teratogenicity, while teratogenic pups had widespread hemorrhage throughout multiple placenta layers. Teratogenic events were associated with significant increases in placental pro-inflammatory cytokines, type I interferons, and chemokines. RVFV displays a high degree of tropism for all placental tissue layers and the degree of hemorrhage and inflammatory mediator production is highest in placenta from pups with adverse outcomes. Given the potential for RVFV to emerge in new locations and the recent evidence of emerging viruses, like Zika and SARS-CoV-2, to undergo vertical transmission, this study provides essential understanding regarding the mechanisms by which RVFV crosses the placenta barrier.


Asunto(s)
COVID-19 , Fiebre del Valle del Rift , Virus de la Fiebre del Valle del Rift , Infección por el Virus Zika , Virus Zika , Humanos , Femenino , Embarazo , Ratas , Animales , Ratas Sprague-Dawley , Placenta/patología , SARS-CoV-2 , Rumiantes
5.
Proc Natl Acad Sci U S A ; 119(33): e2204706119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35939689

RESUMEN

Oropouche orthobunyavirus (OROV; Peribunyaviridae) is a mosquito-transmitted virus that causes widespread human febrile illness in South America, with occasional progression to neurologic effects. Host factors mediating the cellular entry of OROV are undefined. Here, we show that OROV uses the host protein low-density lipoprotein-related protein 1 (Lrp1) for efficient cellular infection. Cells from evolutionarily distinct species lacking Lrp1 were less permissive to OROV infection than cells with Lrp1. Treatment of cells with either the high-affinity Lrp1 ligand receptor-associated protein (RAP) or recombinant ectodomain truncations of Lrp1 significantly reduced OROV infection. In addition, chimeric vesicular stomatitis virus (VSV) expressing OROV glycoproteins (VSV-OROV) bound to the Lrp1 ectodomain in vitro. Furthermore, we demonstrate the biological relevance of the OROV-Lrp1 interaction in a proof-of-concept mouse study in which treatment of mice with RAP at the time of infection reduced tissue viral load and promoted survival from an otherwise lethal infection. These results with OROV, along with the recent finding of Lrp1 as an entry factor for Rift Valley fever virus, highlight the broader significance of Lrp1 in cellular infection by diverse bunyaviruses. Shared strategies for entry, such as the critical function of Lrp1 defined here, provide a foundation for the development of pan-bunyaviral therapeutics.


Asunto(s)
Infecciones por Bunyaviridae , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad , Orthobunyavirus , Internalización del Virus , Animales , Infecciones por Bunyaviridae/metabolismo , Infecciones por Bunyaviridae/virología , Técnicas de Inactivación de Genes , Humanos , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Ratones , Orthobunyavirus/fisiología , América del Sur
6.
Cell ; 184(20): 5163-5178.e24, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34559985

RESUMEN

Rift Valley fever virus (RVFV) is a zoonotic pathogen with pandemic potential. RVFV entry is mediated by the viral glycoprotein (Gn), but host entry factors remain poorly defined. Our genome-wide CRISPR screen identified low-density lipoprotein receptor-related protein 1 (mouse Lrp1/human LRP1), heat shock protein (Grp94), and receptor-associated protein (RAP) as critical host factors for RVFV infection. RVFV Gn directly binds to specific Lrp1 clusters and is glycosylation independent. Exogenous addition of murine RAP domain 3 (mRAPD3) and anti-Lrp1 antibodies neutralizes RVFV infection in taxonomically diverse cell lines. Mice treated with mRAPD3 and infected with pathogenic RVFV are protected from disease and death. A mutant mRAPD3 that binds Lrp1 weakly failed to protect from RVFV infection. Together, these data support Lrp1 as a host entry factor for RVFV infection and define a new target to limit RVFV infections.


Asunto(s)
Interacciones Huésped-Patógeno , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Virus de la Fiebre del Valle del Rift/fisiología , Internalización del Virus , Animales , Especificidad de Anticuerpos/inmunología , Secuencia de Bases , Encéfalo/patología , Encéfalo/virología , Sistemas CRISPR-Cas/genética , Membrana Celular/metabolismo , Células Cultivadas , Glicoproteínas/metabolismo , Glicosaminoglicanos/metabolismo , Glicosilación , Humanos , Proteína Asociada a Proteínas Relacionadas con Receptor de LDL/metabolismo , Ligandos , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/deficiencia , Glicoproteínas de Membrana/metabolismo , Ratones , Unión Proteica , Desnaturalización Proteica , Fiebre del Valle del Rift/patología , Fiebre del Valle del Rift/prevención & control , Fiebre del Valle del Rift/virología , Virus de la Fiebre del Valle del Rift/inmunología
7.
J Gen Virol ; 102(2)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33231535

RESUMEN

The zoonotic emerging Rift Valley fever virus (RVFV) causes sporadic disease in livestock and humans throughout Africa and the Saudi Arabian peninsula. Infection of people with RVFV can occur through mosquito bite or mucosal exposure during butchering or milking of infected livestock. Disease typically presents as a self-limiting fever; however, in rare cases, hepatitis, encephalitis and ocular disease may occur. Recent studies have illuminated the neuropathogenic mechanisms of RVFV in a rat aerosol infection model. Neurological disease in rats is characterized by breakdown of the blood-brain barrier late in infection, infiltration of leukocytes to the central nervous system (CNS) and massive viral replication in the brain. However, the route of RVFV entry into the CNS after inhalational exposure remains unknown. Here, we visualized the entire nasal olfactory route from snout to brain after RVFV infection using RNA in situ hybridization and immunofluorescence microscopy. We found widespread RVFV-infected cells within the olfactory epithelium, across the cribriform plate, and in the glomerular region of the olfactory bulb within 2 days of infection. These results indicate that the olfactory tract is a major route of infection of the brain after inhalational exposure. A better understanding of potential neuroinvasion pathways can support the design of more effective therapeutic regiments for the treatment of neurological disease caused by RVFV.


Asunto(s)
Encefalitis Viral/virología , Hueso Etmoides/virología , Mucosa Olfatoria/virología , Fiebre del Valle del Rift/patología , Virus de la Fiebre del Valle del Rift/fisiología , Animales , Modelos Animales de Enfermedad , Encefalitis Viral/patología , Hueso Etmoides/patología , Femenino , Exposición por Inhalación , Mucosa Olfatoria/patología , Ratas , Ratas Endogámicas Lew , Fiebre del Valle del Rift/virología
8.
PLoS Pathog ; 16(9): e1008903, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32946524

RESUMEN

Vaccines are urgently needed to combat the global coronavirus disease 2019 (COVID-19) pandemic, and testing of candidate vaccines in an appropriate non-human primate (NHP) model is a critical step in the process. Infection of African green monkeys (AGM) with a low passage human isolate of SARS-CoV-2 by aerosol or mucosal exposure resulted in mild clinical infection with a transient decrease in lung tidal volume. Imaging with human clinical-grade 18F-fluoro-2-deoxy-D-glucose positron emission tomography (18F-FDG PET) co-registered with computed tomography (CT) revealed pulmonary lesions at 4 days post-infection (dpi) that resolved over time. Infectious virus was shed from both respiratory and gastrointestinal (GI) tracts in all animals in a biphasic manner, first between 2-7 dpi followed by a recrudescence at 14-21 dpi. Viral RNA (vRNA) was found throughout both respiratory and gastrointestinal systems at necropsy with higher levels of vRNA found within the GI tract tissues. All animals seroconverted simultaneously for IgM and IgG, which has also been documented in human COVID-19 cases. Young AGM represent an species to study mild/subclinical COVID-19 disease and with possible insights into live virus shedding. Future vaccine evaluation can be performed in AGM with correlates of efficacy being lung lesions by PET/CT, virus shedding, and tissue viral load.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/diagnóstico por imagen , Tracto Gastrointestinal/virología , Neumonía Viral/diagnóstico por imagen , Esparcimiento de Virus/fisiología , Animales , COVID-19 , Chlorocebus aethiops , Infecciones por Coronavirus/virología , Pulmón/patología , Pulmón/virología , Pandemias , Neumonía Viral/virología , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...